Received 9 January 2004

Accepted 20 January 2004

Online 30 January 2004

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xingguo Zhang,* Ping Zhong, Maolin Hu and Hongping Xiao

School of Chemistry and Material Science, Wenzhou Normal College, 325027 Wenzhou, People's Republic of China

Correspondence e-mail: zxg7599@sohu.com

Key indicators

Single-crystal X-ray study T = 273 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.037 wR factor = 0.111 Data-to-parameter ratio = 13.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-(2,4-Dichlorophenyl)-2-phthalimidoethanone

The title compound, $C_{16}H_9Cl_2NO_3$, contains two planar ring systems and, in the crystal structure, there are intermolecular π - π stacking interactions between neighboring benzene rings of the phthalimide groups.

Comment

Phthalimides are of particular biological interest and have been reported as antipsychotics (Norman *et al.*, 1996), antiinflammatory agents (Collin *et al.*, 2001), herbicides and insecticides. In addition, some phthalimide derivatives have been designed as electron acceptors in the formation of supramolecular assemblies (Nilotpal *et al.*, 2003). Some interesting crystal structures involving phthalimide groups have been published (Barrett *et al.*, 1995). The title compound, hitherto unreported, is an intermediate in the preparation of 2-amino-1-(2,4-dichlorophenyl)ethanone, an important primary amine.

In the molecule of the title compound, (I), all atoms of the phthalimide moiety are coplanar, as are all atoms of the 2,4-dichlorophenyl moiety and the keto group. The dihedral angle between the two ring systems is $88.4 (1)^{\circ}$.

The bond lengths and angles (Table 1) are similar to those in other phthalimides. The C–Cl, C–C, C=O and C–N bond lengths [C1–Cl1 = 1.7371 (18) Å, C3–Cl2 = 1.7243 (19) Å, C7–C8 = 1.521 (3) Å, C7–C4 = 1.496 (2) Å, C10=O2 = 1.208 (2) Å, C9=O3 = 1.205 (2) Å, C9–N1 = 1.388 (2) Å and C10–N1 = 1.394(2) Å] are within normal ranges for phthalimides.

As in other phthalimides (Barrett *et al.*, 1995), there are intermolecular π - π stacking interactions between the benzene rings of adjacent phthalimide moieties in different molecules; the face-to-face separation is 3.367 Å.

Experimental

The title compound was synthesized from potassium phthalimide and 2,2',4'-trichloroacetophenone by the Gabriel reaction (Gabriel, 1887). Single crystals suitable for X-ray data collection were obtained by slow evaporation of a benzene/toluene (1:2) solution (m.p. 427–428 K). Spectroscopic analysis: IR (KBr, ν cm⁻¹): 1774, 1705, 1108; ¹H NMR (CDCl₃, δ): 7.95 (*m*, 2H), 7.76 (*m*, 2H), 7.70 (*d*, 1H, *J* = 8.4 Hz), 7.52 (*s*, 1H), 7.30 (*d*, 1H, *J* = 8.4 Hz), 5.08 (*s*, 2H).

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

Crystal data

 $C_{16}H_9Cl_2NO_3$ $M_r = 334.14$ Monoclinic, $P2_1/c$ a = 12.9211 (5) Å b = 14.0305 (5) Å c = 8.0488 (3) Å $\beta = 99.341$ (2)° V = 1439.81 (9) Å³ Z = 4

Data collection

Bruker SMART APEX CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{min} = 0.840, T_{max} = 0.905$ 7571 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.111$ S = 1.082592 reflections 199 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Cl1-C1	1.7371 (18)	C4-C5	1.394 (3)
Cl2-C3	1.7243 (19)	C4-C7	1.496 (2)
O1-C7	1.209 (2)	C5-C6	1.379 (3)
O2-C10	1.208 (2)	C7-C8	1.521 (3)
O3-C9	1.205 (2)	C9-C16	1.489 (2)
N1-C9	1.388 (2)	C10-C11	1.485 (2)
N1-C10	1.394 (2)	C11-C12	1.375 (2)
N1-C8	1.438 (2)	C11-C16	1.395 (2)
C1-C2	1.375 (3)	C12-C13	1.381 (3)
C1-C6	1.379 (3)	C13-C14	1.386 (3)
C2-C3	1.385 (3)	C14-C15	1.387 (3)
C3-C4	1.401 (2)	C15-C16	1.378 (2)
C9-N1-C10	112.58 (15)	C10-N1-C8	123.98 (15)
C9-N1-C8	123.10 (15)		

 $D_x = 1.541 \text{ Mg m}^{-3}$

Cell parameters from 684

Mo $K\alpha$ radiation

reflections

 $\mu=0.46~\mathrm{mm}^{-1}$

T = 273 (2) K

 $R_{\rm int}=0.018$

 $\theta_{\max} = 25.2^{\circ}$ $h = -15 \rightarrow 15$

 $l = -8 \rightarrow 9$

 $k=-16\rightarrow 16$

Block, colorless

 $0.39 \times 0.34 \times 0.22 \text{ mm}$

2592 independent reflections

 $w = 1/[\sigma^2(F_o^2) + (0.0658P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

-3

+ 0.1986P]

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\text{max}} = 0.31 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.28 \text{ e } \text{\AA}^{-3}$

2226 reflections with $I > 2\sigma(I)$

 $\theta = 2.4 - 21.4^{\circ}$

All H atoms were initially located in a difference Fourier map and were placed in geometrically idealized positions. They were constrained to ride on their parent atoms, with $Csp^2-H = 0.93$ Å, $Csp^3-H = 0.97$ Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2000); program(s) used to solve

Figure 1

The structure of (I), showing the atomic numbering scheme and displacement ellipsoids drawn at the 50% probability level.

A packing diagram for (I), viewed down the c axis. The dashed lines indicate possible weak interactions.

structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (No. 20272043) and the Natural Science Foundation of Zhejiang Province (No. M203001).

References

Barrett, D. M. Y., Kahwa, I. A., Mague, J. T. & McPherson, G. L. (1995). J. Org. Chem. 60, 5946–5953.

Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Collin, X., Robert, J.-M., Wielgosz, G., Le Baut, G., Bobin-Dubigeon, C., Grimaud, N. & Petit, J.-Y. (2001). *Eur. J. Med. Chem.* **36**, 639–650.

Gabriel, S. (1887). Ber. Dtsch Chem. Ges. 20, 2224-2226.

Nilotpal, B., Rupam, J. S. & Jubaraj, B. B. (2003). Cryst. Growth Des. 3, 639-641.

Norman, M. H., Minick, D. J. & Rigdon, G. C. (1996). J. Med. Chem. 39, 149– 157.