Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xingguo Zhang,* Ping Zhong, Maolin Hu and Hongping Xiao

School of Chemistry and Material Science, Wenzhou Normal College, 325027 Wenzhou, People's Republic of China

Correspondence e-mail: zxg7599@sohu.com

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.037$
$w R$ factor $=0.111$
Data-to-parameter ratio $=13.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1-(2,4-Dichlorophenyl)-2-phthalimidoethanone

The title compound, $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{3}$, contains two planar ring systems and, in the crystal structure, there are intermolecular $\pi-\pi$ stacking interactions between neighboring benzene rings of the phthalimide groups.

Comment

Phthalimides are of particular biological interest and have been reported as antipsychotics (Norman et al., 1996), antiinflammatory agents (Collin et al., 2001), herbicides and insecticides. In addition, some phthalimide derivatives have been designed as electron acceptors in the formation of supramolecular assemblies (Nilotpal et al., 2003). Some interesting crystal structures involving phthalimide groups have been published (Barrett et al., 1995). The title compound, hitherto unreported, is an intermediate in the preparation of 2-amino-1-(2,4-dichlorophenyl)ethanone, an important primary amine.

(I)

In the molecule of the title compound, (I), all atoms of the phthalimide moiety are coplanar, as are all atoms of the 2,4dichlorophenyl moiety and the keto group. The dihedral angle between the two ring systems is $88.4(1)^{\circ}$.

The bond lengths and angles (Table 1) are similar to those in other phthalimides. The $\mathrm{C}-\mathrm{Cl}, \mathrm{C}-\mathrm{C}, \mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{N}$ bond lengths $[\mathrm{C} 1-\mathrm{Cl} 1=1.7371$ (18) $\AA, \mathrm{C} 3-\mathrm{Cl} 2=1.7243$ (19) \AA, $\mathrm{C} 7-\mathrm{C} 8=1.521(3) \AA, \mathrm{C} 7-\mathrm{C} 4=1.496(2) \AA, \mathrm{C} 10=\mathrm{O} 2=$ 1.208 (2) $\AA, \mathrm{C} 9=\mathrm{O} 3=1.205$ (2) $\AA, \mathrm{C} 9-\mathrm{N} 1=1.388$ (2) \AA and $\mathrm{C} 10-\mathrm{N} 1=1.394(2) \AA$] are within normal ranges for phthalimides.

As in other phthalimides (Barrett et al., 1995), there are intermolecular $\pi-\pi$ stacking interactions between the benzene rings of adjacent phthalimide moieties in different molecules; the face-to-face separation is $3.367 \AA$.

Experimental

The title compound was synthesized from potassium phthalimide and $2,2^{\prime}, 4^{\prime}$-trichloroacetophenone by the Gabriel reaction (Gabriel, 1887). Single crystals suitable for X-ray data collection were obtained by slow evaporation of a benzene/toluene (1:2) solution (m.p. 427428 K). Spectroscopic analysis: IR ($\mathrm{KBr}, \nu \mathrm{cm}^{-1}$): $1774,1705,1108$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 7.95(m, 2 \mathrm{H}), 7.76(m, 2 \mathrm{H}), 7.70(d, 1 \mathrm{H}, J=$ $8.4 \mathrm{~Hz}), 7.52(s, 1 \mathrm{H}), 7.30(d, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 5.08(s, 2 \mathrm{H})$.

Received 9 January 2004 Accepted 20 January 2004 Online 30 January 2004

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{3}$
$M_{r}=334.14$
Monoclinic, $P 2_{1} / c$
$a=12.9211$ (5) А
$b=14.0305(5) \AA$
$c=8.0488$ (3) A
$\beta=99.341$ (2) ${ }^{\circ}$
$V=1439.81(9) \AA^{3}$
$Z=4$
$D_{x}=1.541 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 684 reflections
$\theta=2.4-21.4^{\circ}$
$\mu=0.46 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Block, colorless
$0.39 \times 0.34 \times 0.22 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.840, T_{\text {max }}=0.905$
7571 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.111$
$S=1.08$
2592 reflections
199 parameters
H-atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

Cl1-C1	$1.7371(18)$	C4-C5	$1.394(3)$
Cl2-C3	$1.7243(19)$	C4-C7	$1.496(2)$
O1-C7	$1.209(2)$	C5-C6	$1.379(3)$
O2-C10	$1.208(2)$	C7-C8	$1.521(3)$
O3-C9	$1.205(2)$	C $9-\mathrm{C} 16$	$1.489(2)$
N1-C9	$1.388(2)$	C10-C11	$1.485(2)$
N1-C10	$1.394(2)$	C11-C12	$1.375(2)$
N1-C8	$1.438(2)$	C11-C16	$1.395(2)$
C1-C2	$1.375(3)$	C12-C13	$1.381(3)$
C1-C6	$1.379(3)$	C13-C14	$1.386(3)$
C2-C3 $3-\mathrm{C} 4$	$1.385(3)$	C14-C15	$1.387(3)$
	$1.401(2)$	C15-C16	$1.378(2)$
C9-N1-C10			
C9-N1-C8	$112.58(15)$	C10-N1-C8	$123.98(15)$

All H atoms were initially located in a difference Fourier map and were placed in geometrically idealized positions. They were constrained to ride on their parent atoms, with $\mathrm{Csp} p^{2}-\mathrm{H}=0.93 \AA$, $\mathrm{Csp} p^{3}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve

Figure 1
The structure of (I), showing the atomic numbering scheme and displacement ellipsoids drawn at the 50% probability level.

A packing diagram for (I), viewed down the c axis. The dashed lines indicate possible weak interactions.
structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (No. 20272043) and the Natural Science Foundation of Zhejiang Province (No. M203001).

References

Barrett, D. M. Y., Kahwa, I. A., Mague, J. T. \& McPherson, G. L. (1995). J. Org. Chem. 60, 5946-5953.
Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Collin, X., Robert, J.-M., Wielgosz, G., Le Baut, G., Bobin-Dubigeon, C., Grimaud, N. \& Petit, J.-Y. (2001). Eur. J. Med. Chem. 36, 639-650.
Gabriel, S. (1887). Ber. Dtsch Chem. Ges. 20, 2224-2226.
Nilotpal, B., Rupam, J. S. \& Jubaraj, B. B. (2003). Cryst. Growth Des. 3, 639641.

Norman, M. H., Minick, D. J. \& Rigdon, G. C. (1996). J. Med. Chem. 39, 149157.

